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Abstract

A deriviation of the probability distribution of Adsense payments.

1 Introduction

Adsense is Google’s web advertising platform. It is responsible for much
of Google’s revenue, and literally millions people use it every day. Insights
into the statistical nature of this platform should be of interest to many
people. By default, Google presents the results to web site owners in terms
of the clicks per day and the total payments on day. For low click rates,
distribution of payments is definitely not normally distributed and appears
to have a surprisingly large variance given the cost per click should not have
a particularly large variance. This paper is a derivation of the distribution
of the payments and provides an explanation of why this sort of distribution
has an unusually large variance.

2 General Analysis

Assume the average number of clicks in a day is λ per unit time period,
e.g. 3.2 clicks per day. Assume the cost per click (CPC) is distributed,
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f(µ, σ2), with mean µ and variance σ2. This analysis holds for arbitrary unit
time periods, such as weeks or months, but for ease of exposition, we will
maintain our assumption that the unit time period is one day.

The number of clicks in the ith day is ni and the total payment in the
day is pi, where

Pi =

ni∑
j=1

pij (1)

where pij is the jth payment of the ith time period. pij are distributed
f(x;µ, σ2). The Pi are distributed

fi(x;µi, σ
2
i ) (2)

where fi(·) is the distribution that results from adding i random variables
with distribution f(·), and takes into account the nature of the joint distri-
bution between the variables, i.e. does not assume they are independent. It
is assumed that fi(·) has a mean µi and variance σ2

i

A large sample of days will result in different total clicks on each day i.e.
there will be

• m0 days with 0 clicks

• m1 days with 1 click

• ...

• mN days with N clicks

where N is the maximum number of clicks observed in a day. Let wk be the
weight of days with k clicks.

wk =
mk∑N
i=0mi

(3)

The distribution of the payments for the days with k clicks is

Pk(x) = f(x;µk, σ
2
k). (4)

The distribution of the Pk will be a mixture distribution [1, 2]. The proba-
bility density function (p.d.f) of the resultant distribution will be

h(y) =
N∑
i=1

wifi(y;µi, σi) (5)
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and the cumulative distribution function (c.d.f) is

H(Y ) =
N∑
i=1

wi

∫ X

−∞
fi(µi, σi) dx (6)

From [3], we have that the central moments of the mixture distribution are
given by

mP (j) =
N∑
i=1

j∑
k=0

(
j

k

)
(µi − µP )j−kwimi(k) (7)

where mi(k) is the kth central moment of fi(x) and mP (j) is the jth central
moment of the the resulting mixture distribution. For this distribution we
will be interested in the mean,

N∑
i=1

wiµi, (8)

the variance,
σ2
P = mP (2) (9)

the coefficient of variation [4]

cv =
σP
µP

(10)

the Moment Coefficient of Skewness [5]

γ1 =
mP (3)

σ3
P

, (11)

and the Excess Kurtosis [6]

κe =
mP (4)

σ4
P

(12)

A heavy tailed distribution has tails that are not exponentially bounded. This
is equivalent to the moment generation function MH(t), being infinite for all
t > 0 [7]. In this case the definition of the moment generating function [8] is

MH(t) =
N∑
i=1

wi

∫ ∞
−∞

e−ytfi(y;µi, σi) dy (13)
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3 Poisson Distribution

Assume that the number of clicks in a day are Poisson distributed with
parameter λ. The probability of having k clicks in a day is

wk =
λke−λ

k!
. (14)

where wk = Pr(N = k). When dealing with a Poisson distribution, we can
assume N =∞ Accordingly, we can write equation 7 as

mP (j) =
∞∑
i=1

λie−λ

i!

j∑
k=0

(
j

k

)
(µi − µP )j−kmi(k) (15)

4 Reference distribution

First assume that there is only one bidder, who always makes the same bid,
µ. Accordingly f(x;µ, σ) = δ(x− µ), where δ(·) is the Dirac Delta function.
In this case σ is zero. When there are i clicks in a day, the distribution of
the payments will be

fi(x;µi, σi) = δ(x− iµ) (16)

i.e. the µi = iµ and σi is zero.
We have that µi = iµi, so

µP =
N∑
i=1

wiiµ (17)

For a poisson distribution
N∑
i=1

iwi = λ (18)

so
µP = µλ (19)

Now let us consider the central moments of fi in this case, i.e. assuming
constant bids.

mi(k) =

∫ ∞
−∞

δ(x− iµ)(x− iµ)k dx (20)
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so that we have mi(k) = 0, except for k = 0, where mi(0) = 1. Substituting
these valued for mi(k) into equation 15 we have

mP (j) =
∞∑
i=1

λie−λ

i!

(
j

0

)
(µi − µP )j (21)

This equation can easily be evaluated with Mathematica with the result;

mP (2) = λµ2, (22)

mP (3) = λµ3, (23)

mP (4) = λµ4 + 3λ2µ4. (24)

Now using equations 10. . . 12, we can write that

cv =
µλ√
λµ2

=
√
λ, (25)

γ1 =
1√
λ
, (26)

κe =
1

λ
. (27)

It can be seen the coefficient of variation grows with large λ, but the skewness
and the excess kurtosis both approach zero. This confirms that for large λ,
the distribution becomes normally distributed. However the story is very
different for small lambda. For instance if λ = 1

9
, then γ1 = 3 and κe = 9, so

the distribution is highly asymmetric and has a high propensity to produce
outliers. The observation of this behaviour is what motivated this study.

The Moment generating function in this case will be

MH(t) =
∞∑
i=1

wi

∫ ∞
−∞

eytδ(y − iµ) dy, (28)

so

MH(t) =
∞∑
i=1

λie−λ

i!

∫ ∞
−∞

eiµtδ(y − iµ) dy, (29)

so, using Mathematica
MH(t) = eλ(e

tµ−1). (30)

This is finite for finite t, so although the distribution can have large excess
kurtosis, it is not heavy tailed in the formal sense.
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5 General Discrete Distribution

Suppose that the bids for advertisements are distributed as

f(x;~a) =
M∑
i=1

akδ(x− akgk). (31)

where ~a = (a1, a2, ..., aM)T and,

M∑
i=1

ak = 1 (32)

The ak represent the probability of a bid of gk winning. This might
represent a situation where the highest bidder wins with a price g1, then
price g2 wins and so on. Although during a particular day, this will not be
a stationary process, looking from day to day, it is reasonable to assume it
stationary on a day to day basis.

6 Conclusion

The distribution of Adsense returns and has been found to be a mixture
distribution. An explicit solution was found for the case of a single bidder
and Poisson distributed clicks. This showed that for a low click frequency,
the distribution will be non-normal, with a high degree of skewness and
propensity for outliers. However, the distribution is not heavy tailed in the
formal sense.

7 Resources

This technical note are available for access at https://github.com/philomaths-
org. You can access earlier versions of this note on Github by clicking on the
tag corresponding to the earlier technical note’s version number. This paper
has not been refereed, so informed comments are especially welcome.
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9 Appendix

The translation property of the Dirac delta function [9], states that for a
function f(x) ∫ ∞

−∞
δ(x− µ)f(x) dx = f(µ) (33)

Accordingly ∫ ∞
−∞

δ(x− µ)(x− µ)k dx = (µ− µ)k = 0 (34)

for k > 0. If k = 0, the value of the integral is 1.
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